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EXPLANATION OF Phare I. 

Fig. 1. <A piece of the placental cord of Zygena blochti, natural size. 

Fig. 2, Transverse section through the same, showing artery and vein, lym- 

phatic (?) spaces, and three appendicula in oblique section with parts of two more 
in vertical section. x16. 

Fig. 3. A portion of one of the appendicula of the same, showing the ramifying 
vessel. x 21. 

Fig. 4. Transverse section through part of one of the appendicula of the same, 

near its base. x 110. 

Fig. 5. Transverse section through uterine wall of Myliobatis niewhofii, showing 

fibrous and muscular coats, and mucous membrane, with the bases of three papilla. 

x 21. 

Fig. 6. Obliquely transverse section through part of one of the uterine papillee 

of the same, showing some of the simple follicles of the mucous membrane in oblique 

section, and one of the racemose follicles. x 110. 

III.—On Clebsch’s Transformation of the Hydrohkinetic Equations. 

By Asvrosh Muxnopapuyay, M. A., FL R. A.S., FL R.S. EH. 

[Received February 27th ;—Read March 6th, 1889.] 

A first integral of the hydrokinetic equations of Huler’ may be 

obtained by known methods in three cases: (1) Irrotational motion ; 

(2) Steady rotational motion; (3) General rotational motion. It is the 

object of this note to show how the method of applying Clebsch’s 

transformation to the third case can be materially simplified, and inci- 

dentally the relation between the three solutions is pointed out.* 

Starting, then, with the hydrokinetic equations, we remark that 

they may be at once reduced to the forms 

du dk 
eee hol ss ae = 0 o00+e+ 101 vee (1) 

UTE One ee 0 Be ON 
dt dy 

dw dk 
Fe 7 2 2s + As =0 oe cee coeens (3) 

d 1 
where na f a Vie 5 0 

ge = w+? 4+w 

* For the ordinary method, see Basset’s Hydrodynamics, vol, i, p. 28. 

— 
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In the first case, for irrotational motion, the components of mole- 

cular rotation é, y, ¢ vanish, implying the equations 

dd dp dp 
oe ie Cai? eras 

and the equations of motion reduce to 

dU dU dU 
Fe 0, ay = 0, A 0 

where 

v=T4+R. 

Hence, the required first integral is 

dp ee 

where F is ordinarily a function of the time, but for steady motion an 

absolute constant throughout the liquid. 

Secondly, if the motion is rotational but steady, we have 

du do dw 

Te ee 
and the equations of motion lead to 

dk dR ak 
aa a De 

ak dR dk 

de) dy deo 
These linear differential equations lead, by Laplaces’s method, to the 

subsidiary systems 

u v w 

dx dy _ dz 

et prpeae 4 
which denote respectively stream lines and vortex lines. Hence, it is 
possible to construct a series of surfaces 

Rt = constant 

each of which shall be covered over with a net work of stream lines 
and vortex lines. Hence for steady rotational motion we have 

{2 —+V4+- so = constant, 

the constant being an absolute constant so long as we pass from point 

to point on a stream line or vortex line, but which varies as we pass 

from one stream line to another or from one vortex line to another. 

8 
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Thirdly, if the motion of the liquid is perfectly general, neither 

steady nor irrotational, we may put, after Clebsch, 

udu + vdy + wdz = dp + dA dx. 

Observe for a moment that as this simply signifies that the differential 

expression on the lefthand side, when not a perfect differential may be 

resolved into two, one of which is so, and the other may be made so by 
means of an integrating factor, the legitimacy of the transformation is 

selfevident. We have then 

wie a geen yea 
dp dx 

Se Nee 
dz 

ey ee eee oN 
é dy dz dz dy 

dX dx dd dx 

21 ae de de de 
apa ax _ a dx 

~ de dy dy da 

dx dx dx _ 
é By + 7 dy G Pe 

both of which give the subsidiary system 

dx dy dz 

Som aac 
the differential equation of vortex lines. Hence the vortex lines are 

obtained as the intersection of the surfaces 4 = constant, x = constant. 

Again, the value of u aos 

De OE, 
dt ie dt dt dtdx dz dt 

Substituting in equation (1), we have at once 

= dAdx éydXr 

dtde Stdx — 

_ (& dd bits 
= fis dale IR +e 

where 
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and 6 denotes particle differentiation. Equations (2) and (3) lead to 

two similar equations, and we have 

dH CPST CH & & 
S aa +7 a at cz = 0 

leading to the subsidiary system 

§ Are ih Wena 
which denote vortex lines. Hence, we see that itis possible to construct 

a family of surfaces 

H = constant, 

covered over by vortex lines, and the mode of integration shows imme- 

diately that the constant is a function of the time alone. Therefore, for 

steady rotational motion we have 

dp PA EX arbi ig 
f met ont  ae to! mere 

along a vortex line. 

IV.—Note on Stokes’s Theorem and Hydrokinetic Circulation. 

By Asutosh Muxnopapuyay, M.A., F. R. A.S., F. B.S. 2B. 

[Received March 24th ;—Read April 3rd, 1889.] 

The object of this note is to give a new proof of Stokes’s formula 
for hydrokinetic circulation 

f carats eayas ff (lét+myntnue)dS, 

and to point out how it is an immediate consequence of the theory of 

the change of the variables in a multiple integral. 
Assume, after Clebsch, 

ude + vdy + wdz = dp + dA dx, 

so that the integration being performed round a closed curve, we have 

f (udu + vdy + wdz) = f- » dx. 

But, the value of 

ii d dx 
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taken round the closed curve is clearly equal to the sum of the values of 

ffs 
taken round the projections of the closed curve on the coordinate planes, 
Now, for the projected curve on the coordinate plane of yz, we have at 

once from the ordinary formule for the transformation of multiple 

integrals, 

ae dX dx 

(= a dv ak 

The projected curves on ss other two coordinate planes lead to two 

similar expressions. Hence, the circulation round the given closed 

curve is furnished by 

f (udu + vdy + wdz) 

dkdx ddd 
aX ay de 
dydz  dzdy 

addy _ ad dx 
+ AGE Gz cps Sas dx 

dy aX dX dx 

+ ff GE-Fiew 
But, as an immediate consequence of Clebsch’s transformation, we have 

eS — 

dp dx 
=— Nes 

eee Es i 
dp 

a dy as = 

_ do dx 
eae nw ~ 

whence 

es ee 
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Therefore, putting 

dydz=1dS, dadz=mdS8, dady = ndS8, 
where J, m, n are the direction cosines of the normal, we have 

(uda + vdz + wdz) 

& -*) Ee (= af dw 
(= aa m a a) +n 

= 2 fe + my + nb) dS, 

which is Stokes’s Theorem. It is worth noting that as no physical con- 

ception enters into the above proof, it holds good whether we regard the 

theorem as a purely analytical one or as merely furnishing a formula for 
hydrokinetic circulation. 

dv du 

V.—On a Curve of Aberrancy. 

By AsvutosH Muxwopapuyay, M. A., F.R. A. S., F. B.S. BE. 

[Received May 23rd ;—Read June 5th, 1889.] 

If a curve be referred to rectangular axes drawn through any 

origin, the coordinates (a, 6) of the centre of aberrancy, which is the 

centre of the osculating conic at any given point (#, y) of the curve, 

are given in the most general form by the system 

a =e — ie 
F 3gs — “Dre 

Se iy) 
Peds 3qs — dr? 

where p, g, 7, s are the successive differential coefficients of y with 

respect to z.* The locus of (a, 8) is called the aberrancy curve of the 

given curve, and in this note, I shall investigate the aberrancy curve 

of a plane cubic of Newton’s fourth class} 

= ax? + 3ba* + 8ce + d 

in which the diametral conic degenerates into the line at infinity. 
We have 

p = 3 (ax* + 2bx + c) 
g = 6 (ax + b) 

r = 6a 

s=0 

* J. A. S. B. 1888, vol. lvii, part ii, p. 324. 

+ Salmon’s Higher Plane Curves, (Hd. 1879), p. 177. 
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whence 

pr — 3g? = 18 (ac — b?) — 90 (aw + b)* 

82 3b 
a re US fe 5 5a 

vas ax +b Q 2 B=y+3 | 18 (ae v2) — 90 (ax + b) } 

Therefore 
_ 38a 3b 

Sue oa 

5 
az +b == (aa + b) 

and 

ms 9 (aa + b) Fs 125 A 

1-8 Ba | (oo 8) — ae (an + 0) | 
But from the equation of the curve we have 

a®’y = (ax + b)? + 38a(ac — b*) « + atd — Bb, 

Therefore, substituting for « and y in terms of a and £, we have 

64 a®?B = — 125 a®a® — 375 a®ba® + (192 ac — 5670?) aa 

+ (64a%d — 189°), 
or, writing x, y for a, B, we see that the aberrancy curve of the plane 
cubic 

y = ax® + 3ba® + 8ca + d 

is another plane cubic of the same class 
y = Aa’ + 3Bz? + 3802+ D 

where 

A= -—ka 

B=-—kb 

— J 
C= —he+ (1+ hk) 

a’d — 68 
D= ahd Ct i) a 

125 
arr 

If, therefore, 
HH = ac — 0, G=a®d — 3abe 4 2b 

be the invariants of the given cubic, and H’, G’ the corresponding quan- 
tities for the aberrancy cubic, viz., 

H’ = AC — B?, G! = A®D — 3ABO + 2B3, 

we have by direct calculation 
H’ = —k 

G! = eG. 
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It follows, therefore, that the quantity 

H? (ac — b?)2 
Gawd —Babe +208 

is an invariant for the given cubic and its aberrancy curve. 

If we seek the common points of intersection of the two cubics, 
we find on subtracting the equations 

(az + 6)? =0 

which shews that the two cubics have only one common point of in- 

tersection which is the point of inflexion for both; the coordinates of 

the point are 

V1I.—Natural History Notes from H. M. Indian Marine Survey Steamer 
‘Investigator,’ Commander Atrrep Carpenter, R. N., D. S. O., 

commanding.—No. 15. Descriptions of seven additional new Indian 

Amphipods.—By G. M. Giuus, M. B., F.R.C.S8., late Surgeon-Natu- 
ralist to the Survey. 

[Received and Read November 6th, 1889. ] 

(With Plate IT.) 

Before proceding to the description of the species now described, 

I have to make a correction in my last paper read on February Ist, 1888. 

In that communication, I described, under the name of Concholestes 

dentallii, gen. et sp. noy., a curious corophiid which inhabits deserted 

dentalium shells; remarking that I believed that such a habit had not 

beeu previously noted in an amphipod. I find, however, I was in error 

in this matter, as, while searching for references to species which might 

be identical with those described in the present paper, I came across 

a description of a Norwegian species which is certainly congeneric and, 

like the Indian species, inhabits deserted dentalium shells. Sars (Forh. 

Vidensk.-Selsk. Christiania, 1882, No. 18, pp. 1138, Part VI, fig. 7) 

describes this species as Siphonacetes pallidus. 

I do not see, however, how either Sars’ or my species can be in- 

cluded in Siphonecetes without unduly straining Kroyer’s definition 

of the genus in Nat. Tidskr. I, p. 491. In the two species under consi- 

deration, the Ist and 2nd gnathopoda, instead of being subequal, present 

a very marked difference of size; and again, the eighth thoracic appen- 

dages are very long, instead of the 6th, 7th, and 8th being “ very short.” 

My species too wants the double hook to the single ramus of the last 


